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Turbulence in Magnetised Plasmas

• nonlinearity of small disturbances on an equilibrium

† three wave interactions

† energy transfer, cascading

• incompressible turbulence models

† simple fluid turbulence, role of pressure to maintain incompressibility

† cascades of energy, vorticity (“enstrophy”), role of vortex tubes in 2D and 3D models

† 2D MHD turbulence, role of magnetic field to maintain incompressibility

• simple drift effects in a magnetised plasma with gradients

† dissipative coupling, effect on cascades

† evolution of spectra, physical meaning of cascades

† varying properties of nonlinear couplings

• the transport problem



Various Nonlinear Effects

• rapid space/time variation of parameters (e.g., shocks, isolated jets)

• quasilinear interaction between small waves to alter the background

† each wave (k) beats against itself (k′)

† background is wavenumber zero
k + k′ = 0

• turbulence — incoherent interaction with many wave combinations

† each wave (k) is forced upon by two other beat waves (k′ and k′′)

† many distinct pairs {k′,k′′} with no relation to k

k + k′ + k′′ = 0

many degrees of freedom, incoherent, statistical



Small Disturbances on an Equilibrium

• ordering in general — gradients multiplied by constant parameters

∆⊥ � L⊥ =⇒ (pe + p̃e)∇ · v → pe∇ · v

• background may be inhomogeneous (define x as down-gradient)

∇pe → −
pe
L⊥
∇x where ∇x = −L⊥∇ log pe

• “mixing level” disturbances

∇p̃e ∼ ∇pe =⇒ p̃e
pe
∼ ∆⊥
L⊥
� 1

• nonlinearity remains in advection effects — a nonlinear term and a linear forcing term

vE · ∇ (pe + p̃e) =
c

B
b · ∇φ̃×∇p̃e −

pe
L⊥

vxE where vxE =
c

B
b · ∇φ̃×∇x

keep nonlinearities where quadratic under gradients



Incompressible Hydrodynamics

• start with MHD, neglect magnetic field

(
∂v

∂t
+ v · ∇v

)
= −1

ρ
∇p

• take curl, treat ρ as constant, neglect ∇ · v
(
∂

∂t
+ v · ∇

)
∇×v = (∇×v) · ∇v

• pressure submerges — only role is to maintain incompressibility

let
∂

∂t
∇ · v = 0 then ∇2p = −∇ · (ρv · ∇v)

• leads to “projection methods” for computations



The Cascade to Smaller Scales

• the “eddy mitosis” model: vortices sheared apart, into smaller ones about half the size

• assume: energy input (“stirring”) and loss (“dissipation”) occur in well separated ranges in scale
◦ situation of “high Reynolds number” meaning turbulent mixing� viscous or collisional diffusion

• at scale n, have kinetic energy, En = v2
n/2, and “eddy turnover time” inverse to vorticity, (kv)n

• during the mitosis process, energy is conserved → power law

(kv)n−1En−1 = (kv)nEn kn = 2kn−1

• in this “inertial range” one finds the Kolmogorov scaling law

(En/kn) ∝ k−5/3
n density of states kn

• the vorticity increases towards smaller scales → enstrophy is produced

(kv)n ∝ k2/3
n



Enstrophy in Incompressible Hydrodynamics

• Euler equation in 3D (
∂

∂t
+ v · ∇

)
∇×v = (∇×v) · ∇v

• note mean squared vorticity (“enstrophy”) is not generally conserved

∂W

∂t
+∇ · (W v) = [(∇×v)(∇×v)] : [∇v] where W =

1

2
(∇×v) · (∇×v)

• enstrophy is transported by the velocity, but grows if . . .

† the velocity has a component along the vorticity, and also diverges in that direction

vortex tube stretching in 3D



Vortex Tube Stretching

v ∆

Ω :      > 0Ω ∆

v

Ω
Ω

type of motion necessary to entrophy production



What You Can Learn Just From Equations

• energy conservation, energy transfer to smaller scales
◦ statistical redistribution, with more states available at smaller scale
◦ enstrophy must increase

• geometry: enstrophy increase is described by a definite quantity
◦ this quantity can only be positive if there are vortex tubes which are stretched by the flow

Kolmogorov cascade process must proceed through vortex tube stretching

• the above is found merely by examining the properties of the equations
◦ actually solving them was not necessary



2D Incompressible Hydrodynamics

• in 2D one must have ∇×v ⊥ v . . . let ŝ be the normal to the plane

∇ · v = 0 =⇒ v = ŝ×∇ψ =⇒ (∇×v) = ŝ∇2
⊥ψ

• find the 2D Euler equation

∂Ω

∂t
+ v · ∇Ω = 0 with Ω = ∇2

⊥ψ and v = ŝ×∇ψ

• hence the enstrophy (W ) is conserved, along with the energy (U)

let W =
Ω2

2
then

∂W

∂t
+∇ · (W v) = 0

let U =
v2

2
then

∂U

∂t
+∇ · (U v) = 0

both are conserved with same flow field



The Importance of Two Dimensionality

• in fluid dynamics, 2D can be forced by
◦ strong rotation (Proudman-Taylor theorem)
◦ domain anisotropy (the “thin atmosphere” situation)

• in plasma dynamics, 2D is usually forced by
◦ strong background magnetic field (“guide field”), with Alfvén velocity vA
◦ specific energy density of reservoir � v2

A

◦ main reason: “low beta” meaning Te �Miv
2
A hence βe = 4πpe/B

2 � 1

• in 2D, enstrophy is conserved; therefore

Kolmogorov cascade to small scales cannot occur in 2D



The Three Wave Interaction

• start with the 2D Euler equation
∂Ω

∂t
+ v · ∇Ω = 0

• define Fourier decomposition

ψ =
∑

k

eik·xψk ψk =

∮
k2d2x

4π2
e−ik·xψ ψ(−k) = ψ∗k

• Euler equation in k-space

∂Ωk

∂t
= ŝ ·

∮
k2d2x

4π2
e−ik·x

∑

−k′

∑

−k′′

e−ik
′·xe−ik

′′·x (ik′)× (ik′′) Ω−k′ψ−k′′

• three wave condition for the integral not to vanish

k + k′ + k′′ = 0



Equations for Beat Waves

• Euler equation
∂Ωk

∂t
=
∑

−k′

∑

−k′′

1

2
ŝ · (k×k′) (Ω−k′′ψ−k′ − Ω−k′ψ−k′′)

• for beat waves use symmetry

ŝ · (k×k′) = ŝ · (k′×k′′) = ŝ · (k′′×k)

• define coupling matrix

Ckk′ =
1

2
ŝ · (k×k′)

• find beat wave equations (use permutation among k,k′,k′′ triangle)

∂Ωk

∂t
= Ckk′ (Ω−k′′ψ−k′ − Ωk′ψ−k′′)

∂Ωk′

∂t
= Ckk′ (Ω−kψ−k′′ − Ωk′′ψ−k)

∂Ωk′′

∂t
= Ckk′ (Ω−k′ψ−k − Ωkψ−k′)



Energy Transfer

• find energy transfer by multiplying by −ψk and adding complex conjugate

∂Uk

∂t
= 2Ckk′ Re [ψkΩk′ψk′′ − ψkψk′Ωk′′ ]

∂Uk′

∂t
= 2Ckk′ Re [ψk′Ωk′′ψk − ψk′ψk′′Ωk]

∂Uk′′

∂t
= 2Ckk′ Re [ψk′′Ωkψk′ − ψk′′ψkΩk′ ]

• identify transfer channel as terms with opposite sign in one pair of equations, e.g.,

TU (k← k′) = 2Ckk′ Re [−ψkψk′Ωk′′ ]



Enstrophy Transfer

• find enstrophy transfer by multiplying by Ωk and adding complex conjugate

∂Wk

∂t
= 2Ckk′ Re [Ωkψk′Ωk′′ −ΩkΩk′ψk′′ ]

∂Wk′

∂t
= 2Ckk′ Re [Ωk′ψk′′Ωk − Ωk′Ωk′′ψk]

∂Wk′′

∂t
= 2Ckk′ Re [Ωk′′ψkΩk′ −Ωk′′Ωkψk′ ]

• identify transfer channel as terms with opposite sign in one pair of equations, e.g.,

TW (k← k′) = 2Ckk′ Re [−ΩkΩk′ψk′′ ]



The Dual Cascade

• write energy and enstrophy transfer

TU (k← k′) = 2Ckk′ Re [−ψkψk′Ωk′′ ] = 2Ckk′ Re
[
(k′′)2ψkψk′ψk′′

]

TW (k← k′) = 2Ckk′ Re [−ΩkΩk′ψk′′ ] = 2Ckk′ Re
[
−k2(k′)2ψkψk′ψk′′

]

• note that given a definite sign of the triple correlation [ψkψk′ψk′′ ], these are opposite!

• statistically, enstrophy goes to higher k, hence smaller scale, due to the larger k-dependence

† faster mixing, spectral redistribution

• hence energy goes preferentially to lower k, hence larger scale

2D inverse energy cascade

• “maximum entropy” stationary states for discrete systems show Wk ∼ k and Uk ∼ k−1



A Passive Scalar

• density fluctuations follow incompressible equation

∂ρ̃

∂t
+ v · ∇ρ̃ = 0

• passive scalar: ρ̃ is advected by the flow, but effects no back reaction

• in k-space the density equation is the same as for the vorticity

• “fluctuation free energy” or “entropy” is defined by squared amplitude

• hence the free energy transfer has the same form as for enstrophy

flow energy to large scales, free energy to small

• very high correlation Ω̃↔ ρ̃ in forced/dissipative turbulence, even with no coupling effects



Incompressible MHD

• constant parameters, homogeneous background, keep only quadratic nonlinearities

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇

(
p+

B2

8π

)
+

B · ∇B

4π

• set B = Bb and u = v/vA with v2
A = B2/4πρ

1

vA

∂u

∂t
+ u · ∇u = − 1

B2
∇
(

4πp+
B2

2

)
+ b · ∇b

• incompressible MHD kinematic equation

1

vA

∂b

∂t
+ u · ∇b = b · ∇u

• define “Elsässer variables” u± = u± b

• find passive advection, but coupled through advector (note ∇ · v = 0 ↔ B2 not p, for β � 1)

1

vA

∂u±
∂t

+ u∓ · ∇u± = − 1

B2
∇
(

4πp+
B2

2

)



2D Incompressible MHD

• constant parameters, homogeneous background, keep only quadratic nonlinearities

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇

(
p+

B2

8π

)
+

B · ∇B

4π

• take curl, use 2D to avoid (∇×v) · v and J · ∇B

ρ

(
∂

∂t
+ v · ∇

)
∇×v =

1

c
B · ∇J

• define ExB velocity and vorticity, parallel current, parallel gradient

v = vE =
c

B2
B×∇φ Ω =

ρc2

B2
∇2
⊥φ J‖ = b · J

• find correction to Euler vorticity equation

∂Ω

∂t
+ vE · ∇Ω = b · ∇J‖



applications of 2D incompressible MHD

• usually formulated with Elsässer variables: u± = u± b

• define velocity and magnetic field

u = ŝ×∇φ b = −ŝ×∇ψ

• resistive (η), viscous (µ) MHD equations in Alfvén normalisation (∂/∂t↔ vA∇)

∂u±
∂t

+ u∓ · ∇u± = −∇I + (µ± η)∇2
⊥u±

• incompressibility potential
∇2I +∇ · (u∓ · ∇u±) = 0

• this dynamical system is commonly used in astrophysics (e.g., reconnection, dynamo)

• for turbulence within an MHD stable equilibrium, the drive source is ∇p

† coupling processes specifically in the electrons pe ↔ φ become significant

† and the MHD model cannot cover the physics . . .



Dissipative Coupling

• beyond MHD, density is not passive, but coupled through parallel currents to the ExB vorticity

• Ohm’s law, parallel, keeping electron pressure gradient

−E‖ = ∇‖φ̃ =
1

nee
∇‖p̃e − η‖J̃‖

• parallel compressibility enters electron pressure equation (advection is by the ExB velocity)

∂p̃e
∂t

+ vE · ∇ (pe + p̃e) =
Te
e
∇‖J̃‖

• appears as parallel diffusivity but couples to φ̃

∂p̃e
∂t

+ vE · ∇ (pe + p̃e) =
Te

nee2η‖
∇2
‖

(
p̃e − neeφ̃

)

• note that ∇‖p̃e ∼ nee∇‖φ̃ is the usual situation in gradient driven turbulence

† it cannot be treated by the single fluid MHD model



Dissipative Coupling Model for ExB Turbulence

• electrostatic approximation for ω � k⊥vA

E⊥ = −∇⊥φ

• electrostatic potential is stream function for ExB velocity

vE =
c

B2
B×∇φ ∇×ρc

B
vE = Ωb

• vorticity equation is the same as for MHD, with parallel gradient reckoned against the background

∂Ω

∂t
+ vE · ∇Ω = ∇‖J‖

• changes are in the dissipative Ohm’s law . . . and in the electron pressure equation

η‖J‖ =
1

nee
∇‖pe −∇‖φ

∂pe
∂t

+ vE · ∇pe =
Te
e
∇‖J‖

• with J‖ as a function of pe and φ, the system is closed



Dissipative Coupling Model, properly 2D

• with no magnetic fluctuations, ∇‖ is slightly cheating

• actual dynamics is 3D, perp incompressible, J‖ dynamics along B to provide coupling

• answer: model −∇2
‖ with a positive coupling constant, with units of frequency

D =
Te

nee2η‖
k2
‖ which with η‖ = 0.51

meνe
nee2

becomes D =
V 2
e

0.51νe
k2
‖

where Ve =
√
Te/me is the electron thermal velocity

• scale fluctuations as eφ̃/Te and p̃e/pe, use ρ = niMi and ni = ne

• resulting model is called “Hasegawa-Wakatani”

c2MiTe
e2B2

(
∂

∂t
+ vE · ∇

)
∇2
⊥
eφ̃

Te
= D

(
p̃e
pe
− eφ̃

Te

)

(
∂

∂t
+ vE · ∇

)
p̃e
pe

+ vE · ∇ log pe = D

(
p̃e
pe
− eφ̃

Te

)



Dissipative Coupling Model, notes

• we’ve used a static, resistive, current

† neglects magnetic induction ↔ effects of ∂B/∂t, fails if ω ∼ k‖vA

• we’ve still used the ExB velocity for both ions and electrons, perp to B

† for MHD the only restriction is that electrostatic form requires ω � k⊥vA

† in general we require cold ions to use the ExB inertia term

nee∇⊥φ ∼ ∇⊥pe � ∇⊥pi requires Ti � Te

• we’ve assumed isothermal electrons in the p̃e equation

† constant mass density is still OK if p̃e � pe

† generally, T̃e is required but adds no qualitative changes, hence neglected in simplest model

• use of cold ions allows neglect of finite gyroradius effects and still reach down to drift scale

• we’ve neglected sound wave effects, reasonable if k‖L⊥ � 1

• note that to compare NUMBERS to an experiment requires absolute complexity



Scales in the Dissipative Coupling Model

• the Hasegawa-Wakatani equations: dissipative coupling and gradient forcing

c2MiTe
e2B2

(
∂

∂t
+ vE · ∇

)
∇2
⊥
eφ̃

Te
= D

(
p̃e
pe
− eφ̃

Te

)

(
∂

∂t
+ vE · ∇

)
p̃e
pe

+ vE · ∇ log pe = D

(
p̃e
pe
− eφ̃

Te

)

• introduces the drift scale ρs, defined by

ρ2
s = c2MiTe/e

2B2

• gradient forcing gives the time scale L⊥/cs, from the sound speed cs and profile scale length L⊥

c2s =
Te
Mi

L⊥ = |∇ log pe|−1

• most interesting effects come from the varying properties of the two nonlinearities . . .



Computational Dissipative Coupling Model

• normalise in terms of ρs and cs/L⊥, scale variables by a factor of δ = ρs/L⊥

φ← δ−1 eφ̃/Te p← δ−1 p̃e/pe Ω← δ−1 ρ2
s∇2
⊥
(
eφ̃/Te

)

• only parameter is D ← DL⊥/cs

(
∂

∂t
+ vE · ∇

)
Ω = D (p− φ)

(
∂

∂t
+ vE · ∇

)
p = −∂φ

∂y
+D (p− φ)

• ExB advection defined in terms of a Poisson bracket structure, e.g.,

vE · ∇p = [φ, p] =
∂φ

∂x

∂p

∂y
− ∂φ

∂y

∂p

∂x

• linear forcing terms are the dissipative coupling (D) and the gradient drive: vxE = −∂φ/∂y



Illustration of Dual Cascade

• periodic domain, (20π ρs)
2

• examine decaying turbulence started in middle of spectrum (set gradient drive to zero)

pk(0) = φk(0) = a0

[
1 + (k2

⊥/0.32)4
]−1/2

eiΘ

† random phase Θ

† a0 chosen such that rms amplitude is 3.0

• test “hydrodynamic” limit D = 0

† Euler equation for Ω, passive advection for p

• note in some of the figures label for p is ne



• Time evolution of the hydrodynamic model

• initial decay of half squared amplitudes of p and φ, denoted An and Ap, respectively

† also ExB energy (UE) and fluctuation free energy (Un)

• energetic losses (mostly in p due to the direct cascade) for three values of the resolution



• Amplitude spectra in the hydrodynamic model, for p, φ, and Ω (’n’, ’p’, and ’w’)

• times of the snapshots are t = 0 (left), t = 9.8 (center), and t = 24 (right)

• the spectra evolve rapidly apart due to the differing cascade dynamics for p and Ω versus φ

demonstration of bi-directional spectral transfer
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• Evolution of the disturbances for the hydrodynamic model (note ne = p)

• note that the morphology of Ω and φ is completely different although Ω = ∇2
⊥φ



Energy Transfer in the Dissipative Coupling Model

• switch gradient drive back on

• run to “saturation” defined by statistical stationarity for spectral quantities

• wide range of coupling strength, D = 0.01, 0.03, 0.1, 0.3, and 1.0

• displayed for D = 0.1

† energy transfer directions hold for all D checked, only the robustness changes

• D →∞ is the “adiabatic limit” where J‖ → 0 and φ→ p

† robustness of vE · ∇p proportional to about D−3/4



• Time evolution of the dissipative coupling model, for the nominal case of D = 0.1

• half squared amplitudes of p and φ, denoted An and Ap, respectively

† also ExB energy (UE) and fluctuation free energy (Un)

• transport caused by the turbulence, Qe = 〈pvxE〉, for three values of the resolution

† for 642, 1282, and 2562 grid nodes, the values are 4.69± 0.80 and 4.89± 0.74 and 4.14± 0.51



• Saturated state of the dissipative coupling model, for the nominal case of D = 0.1

• averaged amplitude spectra for p, φ, and the Ω (’n’, ’p’, and ’w’)

• morphology of φ and ne = p at t = 400

† close coupling at larger scales but differences on smaller scales, corresponding to the spectra

† the nonlinear interactions affecting p are stronger relative to the coupling at higher k⊥



• Energy and enstrophy transfer in the dissipative coupling model, with D = 0.1

• transfer is from k′ to k, shown where positive

• results show local cascade: mostly 1/2 < k′/k < 2

• direct cascade for Un and W , . . . inverse cascade for UE

cascade dynamics not changed by linear forcing



low k high k

sink

sink

thermal gradient

nonlinear

nonlinear

entire
spectrum
a unit

DW: direction for J
determined by NL

(B Scott Phys Fluids B 1992, Plasma Phys Contr Fusion 1997)

(S Camargo et al Phys Plasmas 1995 and 1996)

J
~

J
~

φ
~

φ
~

p~p~

Energy Transfer:  electromagnetic turbulence



Transport due to ExB Turbulence

• the turbulence causes a finite average advective transport, in general . . .

Q = Qe +Qi Qe =

〈
3

2
p̃e v

x
E

〉
Qi =

〈
3

2
p̃i v

x
E

〉

• in a confined plasma, the equilibrium is maintained by a source

∮
dV S =

∮
dS Q =

∮
dV

∂Q

∂x

• the time scales are very different; typical values: δ ∼ 10−2

τturb ∼ 200
L⊥
cs

τsource ∼ few× δ−2 L⊥
cs

• profiles evolve slowly, turbulence in quasistatic statistical equilibrium

it is a good approximation to consider
turbulence in the presence of a prescribed gradient


