|

Turbulence in Magnetised Plasmas

B. Scott

Max Planck Institut für Plasmaphysik
Euratom Association
D-85748 Garching, Germany

Jul 2007

Turbulence in Magnetised Plasmas

- nonlinearity of small disturbances on an equilibrium
\dagger three wave interactions
\dagger energy transfer, cascading
- incompressible turbulence models
\dagger simple fluid turbulence, role of pressure to maintain incompressibility
\dagger cascades of energy, vorticity ("enstrophy"), role of vortex tubes in 2D and 3D models
\dagger 2D MHD turbulence, role of magnetic field to maintain incompressibility
- simple drift effects in a magnetised plasma with gradients
\dagger dissipative coupling, effect on cascades
\dagger evolution of spectra, physical meaning of cascades
\dagger varying properties of nonlinear couplings
- the transport problem

Various Nonlinear Effects

- rapid space/time variation of parameters (e.g., shocks, isolated jets)
- quasilinear interaction between small waves to alter the background
\dagger each wave (\mathbf{k}) beats against itself $\left(\mathbf{k}^{\prime}\right)$
\dagger background is wavenumber zero

$$
\mathbf{k}+\mathbf{k}^{\prime}=0
$$

- turbulence - incoherent interaction with many wave combinations
\dagger each wave (\mathbf{k}) is forced upon by two other beat waves $\left(\mathbf{k}^{\prime}\right.$ and $\left.\mathbf{k}^{\prime \prime}\right)$
\dagger many distinct pairs $\left\{\mathbf{k}^{\prime}, \mathbf{k}^{\prime \prime}\right\}$ with no relation to \mathbf{k}

$$
\mathbf{k}+\mathbf{k}^{\prime}+\mathbf{k}^{\prime \prime}=0
$$

many degrees of freedom, incoherent, statistical

Small Disturbances on an Equilibrium

- ordering in general - gradients multiplied by constant parameters

$$
\Delta_{\perp} \ll L_{\perp} \quad \Longrightarrow \quad\left(p_{e}+\widetilde{p}_{e}\right) \nabla \cdot \mathbf{v} \quad \rightarrow \quad p_{e} \nabla \cdot \mathbf{v}
$$

- background may be inhomogeneous (define x as down-gradient)

$$
\nabla p_{e} \rightarrow-\frac{p_{e}}{L_{\perp}} \nabla x \quad \text { where } \quad \nabla x=-L_{\perp} \nabla \log p_{e}
$$

- "mixing level" disturbances

$$
\nabla \widetilde{p}_{e} \sim \nabla p_{e} \Longrightarrow \frac{\widetilde{p}_{e}}{p_{e}} \sim \frac{\Delta_{\perp}}{L_{\perp}} \ll 1
$$

- nonlinearity remains in advection effects - a nonlinear term and a linear forcing term

$$
\mathbf{v}_{E} \cdot \nabla\left(p_{e}+\widetilde{p}_{e}\right)=\frac{c}{B} \mathbf{b} \cdot \nabla \widetilde{\phi} \times \nabla \widetilde{p}_{e}-\frac{p_{e}}{L_{\perp}} v_{E}^{x} \quad \text { where } \quad v_{E}^{x}=\frac{c}{B} \mathbf{b} \cdot \nabla \widetilde{\phi} \times \nabla x
$$

keep nonlinearities where quadratic under gradients

Incompressible Hydrodynamics

- start with MHD, neglect magnetic field

$$
\left(\frac{\partial \mathbf{v}}{\partial t}+\mathbf{v} \cdot \nabla \mathbf{v}\right)=-\frac{1}{\rho} \nabla p
$$

- take curl, treat ρ as constant, neglect $\nabla \cdot \mathbf{v}$

$$
\left(\frac{\partial}{\partial t}+\mathbf{v} \cdot \nabla\right) \nabla \times \mathbf{v}=(\nabla \times \mathbf{v}) \cdot \nabla \mathbf{v}
$$

- pressure submerges - only role is to maintain incompressibility

$$
\text { let } \quad \frac{\partial}{\partial t} \nabla \cdot \mathbf{v}=0 \quad \text { then } \quad \nabla^{2} p=-\nabla \cdot(\rho \mathbf{v} \cdot \nabla \mathbf{v})
$$

- leads to "projection methods" for computations

The Cascade to Smaller Scales

- the "eddy mitosis" model: vortices sheared apart, into smaller ones about half the size
- assume: energy input ("stirring") and loss ("dissipation") occur in well separated ranges in scale - situation of "high Reynolds number" meaning turbulent mixing \gg viscous or collisional diffusion
- at scale n, have kinetic energy, $E_{n}=v_{n}^{2} / 2$, and "eddy turnover time" inverse to vorticity, $(k v)_{n}$
- during the mitosis process, energy is conserved \rightarrow power law

$$
(k v)_{n-1} E_{n-1}=(k v)_{n} E_{n} \quad k_{n}=2 k_{n-1}
$$

- in this "inertial range" one finds the Kolmogorov scaling law

$$
\left(E_{n} / k_{n}\right) \propto k_{n}^{-5 / 3} \quad \text { density of states } \quad k_{n}
$$

- the vorticity increases towards smaller scales \rightarrow enstrophy is produced

$$
(k v)_{n} \propto k_{n}^{2 / 3}
$$

Enstrophy in Incompressible Hydrodynamics

- Euler equation in 3D

$$
\left(\frac{\partial}{\partial t}+\mathbf{v} \cdot \nabla\right) \nabla \times \mathbf{v}=(\nabla \times \mathbf{v}) \cdot \nabla \mathbf{v}
$$

- note mean squared vorticity ("enstrophy") is not generally conserved

$$
\frac{\partial W}{\partial t}+\nabla \cdot(W \mathbf{v})=[(\nabla \times \mathbf{v})(\nabla \times \mathbf{v})]:[\nabla \mathbf{v}] \quad \text { where } \quad W=\frac{1}{2}(\nabla \times \mathbf{v}) \cdot(\nabla \times \mathbf{v})
$$

- enstrophy is transported by the velocity, but grows if ...
\dagger the velocity has a component along the vorticity, and also diverges in that direction
vortex tube stretching in 3D

Vortex Tube Stretching

type of motion necessary to entrophy production

What You Can Learn Just From Equations

- energy conservation, energy transfer to smaller scales
- statistical redistribution, with more states available at smaller scale
- enstrophy must increase
- geometry: enstrophy increase is described by a definite quantity
- this quantity can only be positive if there are vortex tubes which are stretched by the flow

Kolmogorov cascade process must proceed through vortex tube stretching

- the above is found merely by examining the properties of the equations
- actually solving them was not necessary

2D Incompressible Hydrodynamics

- in 2 D one must have $\nabla \times \mathbf{v} \perp \mathbf{v} \ldots$ let $\hat{\mathbf{s}}$ be the normal to the plane

$$
\nabla \cdot \mathbf{v}=0 \quad \Longrightarrow \quad \mathbf{v}=\hat{\mathbf{s}} \times \nabla \psi \quad \Longrightarrow \quad(\nabla \times \mathbf{v})=\hat{\mathbf{s}} \nabla_{\perp}^{2} \psi
$$

- find the 2D Euler equation

$$
\frac{\partial \Omega}{\partial t}+\mathbf{v} \cdot \nabla \Omega=0 \quad \text { with } \quad \Omega=\nabla_{\perp}^{2} \psi \quad \text { and } \quad \mathbf{v}=\hat{\mathbf{s}} \times \nabla \psi
$$

- hence the enstrophy (W) is conserved, along with the energy (U)

$$
\begin{aligned}
\text { let } & W=\frac{\Omega^{2}}{2} & \text { then } & \frac{\partial W}{\partial t}+\nabla \cdot(W \mathbf{v})=0 \\
\text { let } U & =\frac{v^{2}}{2} & \text { then } & \frac{\partial U}{\partial t}+\nabla \cdot(U \mathbf{v})=0
\end{aligned}
$$

both are conserved with same flow field

The Importance of Two Dimensionality

- in fluid dynamics, 2D can be forced by
- strong rotation (Proudman-Taylor theorem)
- domain anisotropy (the "thin atmosphere" situation)
- in plasma dynamics, 2D is usually forced by
- strong background magnetic field ("guide field"), with Alfvén velocity v_{A}
- specific energy density of reservoir $\ll v_{A}^{2}$
- main reason: "low beta" meaning $T_{e} \ll M_{i} v_{A}^{2}$ hence $\beta_{e}=4 \pi p_{e} / B^{2} \ll 1$
- in 2 D , enstrophy is conserved; therefore

Kolmogorov cascade to small scales cannot occur in 2D

The Three Wave Interaction

- start with the 2D Euler equation

$$
\frac{\partial \Omega}{\partial t}+\mathbf{v} \cdot \nabla \Omega=0
$$

- define Fourier decomposition

$$
\psi=\sum_{\mathbf{k}} e^{i \mathbf{k} \cdot \mathbf{x}} \psi_{\mathbf{k}} \quad \psi_{\mathbf{k}}=\oint \frac{k^{2} d^{2} x}{4 \pi^{2}} e^{-i \mathbf{k} \cdot \mathbf{x}} \psi \quad \psi_{(-\mathbf{k})}=\psi_{\mathbf{k}}^{*}
$$

- Euler equation in \mathbf{k}-space

$$
\frac{\partial \Omega_{\mathbf{k}}}{\partial t}=\hat{\mathbf{s}} \cdot \oint \frac{k^{2} d^{2} x}{4 \pi^{2}} e^{-i \mathbf{k} \cdot \mathbf{x}} \sum_{-\mathbf{k}^{\prime}} \sum_{-\mathbf{k}^{\prime \prime}} e^{-i \mathbf{k}^{\prime} \cdot \mathbf{x}} e^{-i \mathbf{k}^{\prime \prime} \cdot \mathbf{x}}\left(i \mathbf{k}^{\prime}\right) \times\left(i \mathbf{k}^{\prime \prime}\right) \Omega_{-\mathbf{k}^{\prime}} \psi_{-\mathbf{k}^{\prime \prime}}
$$

- three wave condition for the integral not to vanish

$$
\mathbf{k}+\mathbf{k}^{\prime}+\mathbf{k}^{\prime \prime}=0
$$

Equations for Beat Waves

- Euler equation

$$
\frac{\partial \Omega_{\mathbf{k}}}{\partial t}=\sum_{-\mathbf{k}^{\prime}} \sum_{-\mathbf{k}^{\prime \prime}} \frac{1}{2} \hat{\mathbf{s}} \cdot\left(\mathbf{k} \times \mathbf{k}^{\prime}\right)\left(\Omega_{-\mathbf{k}^{\prime \prime}} \psi_{-\mathbf{k}^{\prime}}-\Omega_{-\mathbf{k}^{\prime}} \psi_{-\mathbf{k}^{\prime \prime}}\right)
$$

- for beat waves use symmetry

$$
\hat{\mathbf{s}} \cdot\left(\mathbf{k} \times \mathbf{k}^{\prime}\right)=\hat{\mathbf{s}} \cdot\left(\mathbf{k}^{\prime} \times \mathbf{k}^{\prime \prime}\right)=\hat{\mathbf{s}} \cdot\left(\mathbf{k}^{\prime \prime} \times \mathbf{k}\right)
$$

- define coupling matrix

$$
C_{\mathbf{k k}^{\prime}}=\frac{1}{2} \hat{\mathbf{s}} \cdot\left(\mathbf{k} \times \mathbf{k}^{\prime}\right)
$$

- find beat wave equations (use permutation among $\mathbf{k}, \mathbf{k}^{\prime}, \mathbf{k}^{\prime \prime}$ triangle)

$$
\begin{aligned}
& \frac{\partial \Omega_{\mathbf{k}}}{\partial t}=C_{\mathbf{k k}^{\prime}}\left(\Omega_{-\mathbf{k}^{\prime \prime}} \psi_{-\mathbf{k}^{\prime}}-\Omega_{\mathbf{k}^{\prime}} \psi_{-\mathbf{k}^{\prime \prime}}\right) \\
& \frac{\partial \Omega_{\mathbf{k}^{\prime}}}{\partial t}=C_{\mathbf{k k}^{\prime}}\left(\Omega_{-\mathbf{k}} \psi_{-\mathbf{k}^{\prime \prime}}-\Omega_{\mathbf{k}^{\prime \prime}} \psi_{-\mathbf{k}}\right) \\
& \frac{\partial \Omega_{\mathbf{k}^{\prime \prime}}}{\partial t}=C_{\mathbf{k k}^{\prime}}\left(\Omega_{-\mathbf{k}^{\prime}} \psi_{-\mathbf{k}}-\Omega_{\mathbf{k}} \psi_{-\mathbf{k}^{\prime}}\right)
\end{aligned}
$$

Energy Transfer

- find energy transfer by multiplying by $-\psi_{\mathbf{k}}$ and adding complex conjugate

$$
\begin{aligned}
\frac{\partial U_{\mathbf{k}}}{\partial t} & =2 C_{\mathbf{k k}^{\prime}} \operatorname{Re}\left[\psi_{\mathbf{k}} \Omega_{\mathbf{k}^{\prime}} \psi_{\mathbf{k}^{\prime \prime}}-\psi_{\mathbf{k}} \psi_{\mathbf{k}^{\prime}} \Omega_{\mathbf{k}^{\prime \prime}}\right] \\
\frac{\partial U_{\mathbf{k}^{\prime}}}{\partial t} & =2 C_{\mathbf{k} \mathbf{k}^{\prime}} \operatorname{Re}\left[\psi_{\mathbf{k}^{\prime}} \Omega_{\mathbf{k}^{\prime \prime}} \psi_{\mathbf{k}}-\psi_{\mathbf{k}^{\prime}} \psi_{\mathbf{k}^{\prime \prime}} \Omega_{\mathbf{k}}\right] \\
\frac{\partial U_{\mathbf{k}^{\prime \prime}}}{\partial t} & =2 C_{\mathbf{k} \mathbf{k}^{\prime}} \operatorname{Re}\left[\psi_{\mathbf{k}^{\prime \prime}} \Omega_{\mathbf{k}} \psi_{\mathbf{k}^{\prime}}-\psi_{\mathbf{k}^{\prime \prime}} \psi_{\mathbf{k}} \Omega_{\mathbf{k}^{\prime}}\right]
\end{aligned}
$$

- identify transfer channel as terms with opposite sign in one pair of equations, e.g.,

$$
T_{U}\left(\mathbf{k} \leftarrow \mathbf{k}^{\prime}\right)=2 C_{\mathbf{k} \mathbf{k}^{\prime}} \operatorname{Re}\left[-\psi_{\mathbf{k}} \psi_{\mathbf{k}^{\prime}} \Omega_{\mathbf{k}^{\prime \prime}}\right]
$$

Enstrophy Transfer

- find enstrophy transfer by multiplying by $\Omega_{\mathbf{k}}$ and adding complex conjugate

$$
\begin{aligned}
\frac{\partial W_{\mathbf{k}}}{\partial t} & =2 C_{\mathbf{k} \mathbf{k}^{\prime}} \operatorname{Re}\left[\Omega_{\mathbf{k}} \psi_{\mathbf{k}^{\prime}} \Omega_{\mathbf{k}^{\prime \prime}}-\Omega_{\mathbf{k}} \Omega_{\mathbf{k}^{\prime}} \psi_{\mathbf{k}^{\prime \prime}}\right] \\
\frac{\partial W_{\mathbf{k}^{\prime}}}{\partial t} & =2 C_{\mathbf{k} \mathbf{k}^{\prime}} \operatorname{Re}\left[\Omega_{\mathbf{k}^{\prime}} \psi_{\mathbf{k}^{\prime \prime}} \Omega_{\mathbf{k}}-\Omega_{\mathbf{k}^{\prime}} \Omega_{\mathbf{k}^{\prime \prime}} \psi_{\mathbf{k}}\right] \\
\frac{\partial W_{\mathbf{k}^{\prime \prime}}}{\partial t} & =2 C_{\mathbf{k} \mathbf{k}^{\prime}} \operatorname{Re}\left[\Omega_{\mathbf{k}^{\prime \prime}} \psi_{\mathbf{k}} \Omega_{\mathbf{k}^{\prime}}-\Omega_{\mathbf{k}^{\prime \prime}} \Omega_{\mathbf{k}} \psi_{\mathbf{k}^{\prime}}\right]
\end{aligned}
$$

- identify transfer channel as terms with opposite sign in one pair of equations, e.g.,

$$
T_{W}\left(\mathbf{k} \leftarrow \mathbf{k}^{\prime}\right)=2 C_{\mathbf{k} \mathbf{k}^{\prime}} \operatorname{Re}\left[-\Omega_{\mathbf{k}} \Omega_{\mathbf{k}^{\prime}} \psi_{\mathbf{k}^{\prime \prime}}\right]
$$

The Dual Cascade

- write energy and enstrophy transfer

$$
\begin{array}{cc}
T_{U}\left(\mathbf{k} \leftarrow \mathbf{k}^{\prime}\right)=2 C_{\mathbf{k} \mathbf{k}^{\prime}} \operatorname{Re}\left[-\psi_{\mathbf{k}} \psi_{\mathbf{k}^{\prime}} \Omega_{\mathbf{k}^{\prime \prime}}\right] \quad & =2 C_{\mathbf{k} \mathbf{k}^{\prime}} \operatorname{Re}\left[\left(k^{\prime \prime}\right)^{2} \psi_{\mathbf{k}} \psi_{\mathbf{k}^{\prime}} \psi_{\mathbf{k}^{\prime \prime}}\right] \\
T_{W}\left(\mathbf{k} \leftarrow \mathbf{k}^{\prime}\right)=2 C_{\mathbf{k} \mathbf{k}^{\prime}} \operatorname{Re}\left[-\Omega_{\mathbf{k}} \Omega_{\mathbf{k}^{\prime}} \psi_{\mathbf{k}^{\prime \prime}}\right] & =2 C_{\mathbf{k k}^{\prime}} \operatorname{Re}\left[-k^{2}\left(k^{\prime}\right)^{2} \psi_{\mathbf{k}} \psi_{\mathbf{k}^{\prime}} \psi_{\mathbf{k}^{\prime \prime}}\right]
\end{array}
$$

- note that given a definite sign of the triple correlation $\left[\psi_{\mathbf{k}} \psi_{\mathbf{k}^{\prime}} \psi_{\mathbf{k}^{\prime \prime}}\right]$, these are opposite!
- statistically, enstrophy goes to higher k, hence smaller scale, due to the larger k-dependence
\dagger faster mixing, spectral redistribution
- hence energy goes preferentially to lower k, hence larger scale

2D inverse energy cascade

- "maximum entropy" stationary states for discrete systems show $W_{k} \sim k$ and $U_{k} \sim k^{-1}$

A Passive Scalar

- density fluctuations follow incompressible equation

$$
\frac{\partial \widetilde{\rho}}{\partial t}+\mathbf{v} \cdot \nabla \widetilde{\rho}=0
$$

- passive scalar: $\widetilde{\rho}$ is advected by the flow, but effects no back reaction
- in \mathbf{k}-space the density equation is the same as for the vorticity
- "fluctuation free energy" or "entropy" is defined by squared amplitude
- hence the free energy transfer has the same form as for enstrophy
flow energy to large scales, free energy to small
- very high correlation $\widetilde{\Omega} \leftrightarrow \widetilde{\rho}$ in forced/dissipative turbulence, even with no coupling effects

Incompressible MHD

- constant parameters, homogeneous background, keep only quadratic nonlinearities

$$
\rho\left(\frac{\partial \mathbf{v}}{\partial t}+\mathbf{v} \cdot \nabla \mathbf{v}\right)=-\nabla\left(p+\frac{B^{2}}{8 \pi}\right)+\frac{\mathbf{B} \cdot \nabla \mathbf{B}}{4 \pi}
$$

- $\operatorname{set} \mathbf{B}=B \mathbf{b}$ and $\mathbf{u}=\mathbf{v} / v_{A}$ with $v_{A}^{2}=B^{2} / 4 \pi \rho$

$$
\frac{1}{v_{A}} \frac{\partial \mathbf{u}}{\partial t}+\mathbf{u} \cdot \nabla \mathbf{u}=-\frac{1}{B^{2}} \nabla\left(4 \pi p+\frac{B^{2}}{2}\right)+\mathbf{b} \cdot \nabla \mathbf{b}
$$

- incompressible MHD kinematic equation

$$
\frac{1}{v_{A}} \frac{\partial \mathbf{b}}{\partial t}+\mathbf{u} \cdot \nabla \mathbf{b}=\mathbf{b} \cdot \nabla \mathbf{u}
$$

- define "Elsässer variables" $\mathbf{u}_{ \pm}=\mathbf{u} \pm \mathbf{b}$
- find passive advection, but coupled through advector (note $\nabla \cdot \mathbf{v}=0 \leftrightarrow B^{2}$ not p, for $\beta \ll 1$)

$$
\frac{1}{v_{A}} \frac{\partial \mathbf{u}_{ \pm}}{\partial t}+\mathbf{u}_{\mp} \cdot \nabla \mathbf{u}_{ \pm}=-\frac{1}{B^{2}} \nabla\left(4 \pi p+\frac{B^{2}}{2}\right)
$$

2D Incompressible MHD

- constant parameters, homogeneous background, keep only quadratic nonlinearities

$$
\rho\left(\frac{\partial \mathbf{v}}{\partial t}+\mathbf{v} \cdot \nabla \mathbf{v}\right)=-\nabla\left(p+\frac{B^{2}}{8 \pi}\right)+\frac{\mathbf{B} \cdot \nabla \mathbf{B}}{4 \pi}
$$

- take curl, use 2D to avoid $(\nabla \times \mathbf{v}) \cdot \mathbf{v}$ and $\mathbf{J} \cdot \nabla \mathbf{B}$

$$
\rho\left(\frac{\partial}{\partial t}+\mathbf{v} \cdot \nabla\right) \nabla \times \mathbf{v}=\frac{1}{c} \mathbf{B} \cdot \nabla \mathbf{J}
$$

- define ExB velocity and vorticity, parallel current, parallel gradient

$$
\mathbf{v}=\mathbf{v}_{E}=\frac{c}{B^{2}} \mathbf{B} \times \nabla \phi \quad \Omega=\frac{\rho c^{2}}{B^{2}} \nabla_{\perp}^{2} \phi \quad J_{\|}=\mathbf{b} \cdot \mathbf{J}
$$

- find correction to Euler vorticity equation

$$
\frac{\partial \Omega}{\partial t}+\mathbf{v}_{E} \cdot \nabla \Omega=\mathbf{b} \cdot \nabla J_{\|}
$$

applications of 2D incompressible MHD

- usually formulated with Elsässer variables: $\mathbf{u}_{ \pm}=\mathbf{u} \pm \mathbf{b}$
- define velocity and magnetic field

$$
\mathbf{u}=\hat{\mathbf{s}} \times \nabla \phi \quad \mathbf{b}=-\hat{\mathbf{s}} \times \nabla \psi
$$

- resistive (η), viscous (μ) MHD equations in Alfvén normalisation $\left(\partial / \partial t \leftrightarrow v_{A} \nabla\right)$

$$
\frac{\partial \mathbf{u}_{ \pm}}{\partial t}+\mathbf{u}_{\mp} \cdot \nabla \mathbf{u}_{ \pm}=-\nabla I+(\mu \pm \eta) \nabla_{\perp}^{2} \mathbf{u}_{ \pm}
$$

- incompressibility potential

$$
\nabla^{2} I+\nabla \cdot\left(\mathbf{u}_{\mp} \cdot \nabla \mathbf{u}_{ \pm}\right)=0
$$

- this dynamical system is commonly used in astrophysics (e.g., reconnection, dynamo)
- for turbulence within an MHD stable equilibrium, the drive source is ∇p
\dagger coupling processes specifically in the electrons $p_{e} \leftrightarrow \phi$ become significant
\dagger and the MHD model cannot cover the physics ...

Dissipative Coupling

- beyond MHD, density is not passive, but coupled through parallel currents to the ExB vorticity
- Ohm's law, parallel, keeping electron pressure gradient

$$
-E_{\|}=\nabla_{\|} \widetilde{\phi}=\frac{1}{n_{e} e} \nabla_{\|} \widetilde{p}_{e}-\eta_{\|} \widetilde{J}_{\|}
$$

- parallel compressibility enters electron pressure equation (advection is by the ExB velocity)

$$
\frac{\partial \widetilde{p}_{e}}{\partial t}+\mathbf{v}_{E} \cdot \nabla\left(p_{e}+\widetilde{p}_{e}\right)=\frac{T_{e}}{e} \nabla_{\|} \widetilde{J}_{\|}
$$

- appears as parallel diffusivity but couples to $\widetilde{\phi}$

$$
\frac{\partial \widetilde{p}_{e}}{\partial t}+\mathbf{v}_{E} \cdot \nabla\left(p_{e}+\widetilde{p}_{e}\right)=\frac{T_{e}}{n_{e} e^{2} \eta_{\|}} \nabla_{\|}^{2}\left(\widetilde{p}_{e}-n_{e} e \widetilde{\phi}\right)
$$

- note that $\nabla_{\|} \widetilde{p}_{e} \sim n_{e} e \nabla_{\|} \widetilde{\phi}$ is the usual situation in gradient driven turbulence
\dagger it cannot be treated by the single fluid MHD model

Dissipative Coupling Model for ExB Turbulence

- electrostatic approximation for $\omega \ll k_{\perp} v_{A}$

$$
\mathbf{E}_{\perp}=-\nabla_{\perp} \phi
$$

- electrostatic potential is stream function for ExB velocity

$$
\mathbf{v}_{E}=\frac{c}{B^{2}} \mathbf{B} \times \nabla \phi \quad \nabla \times \frac{\rho c}{B} \mathbf{v}_{E}=\Omega \mathbf{b}
$$

- vorticity equation is the same as for MHD, with parallel gradient reckoned against the background

$$
\frac{\partial \Omega}{\partial t}+\mathbf{v}_{E} \cdot \nabla \Omega=\nabla_{\|} J_{\|}
$$

- changes are in the dissipative Ohm's law ... and in the electron pressure equation

$$
\eta_{\|} J_{\|}=\frac{1}{n_{e} e} \nabla_{\|} p_{e}-\nabla_{\|} \phi \quad \frac{\partial p_{e}}{\partial t}+\mathbf{v}_{E} \cdot \nabla p_{e}=\frac{T_{e}}{e} \nabla_{\|} J_{\|}
$$

- with $J_{\|}$as a function of p_{e} and ϕ, the system is closed

Dissipative Coupling Model, properly 2D

- with no magnetic fluctuations, $\nabla_{\|}$is slightly cheating
- actual dynamics is 3 D , perp incompressible, $J_{\|}$dynamics along \mathbf{B} to provide coupling
- answer: model $-\nabla_{\|}^{2}$ with a positive coupling constant, with units of frequency

$$
D=\frac{T_{e}}{n_{e} e^{2} \eta_{\|}} k_{\|}^{2} \quad \text { which with } \quad \eta_{\|}=0.51 \frac{m_{e} \nu_{e}}{n_{e} e^{2}} \quad \text { becomes } \quad D=\frac{V_{e}^{2}}{0.51 \nu_{e}} k_{\|}^{2}
$$

where $V_{e}=\sqrt{T_{e} / m_{e}}$ is the electron thermal velocity

- scale fluctuations as $e \widetilde{\phi} / T_{e}$ and $\widetilde{p}_{e} / p_{e}$, use $\rho=n_{i} M_{i}$ and $n_{i}=n_{e}$
- resulting model is called "Hasegawa-Wakatani"

$$
\begin{gathered}
\frac{c^{2} M_{i} T_{e}}{e^{2} B^{2}}\left(\frac{\partial}{\partial t}+\mathbf{v}_{E} \cdot \nabla\right) \nabla_{\perp}^{2} \frac{e \widetilde{\phi}}{T_{e}}=D\left(\frac{\widetilde{p}_{e}}{p_{e}}-\frac{e \widetilde{\phi}}{T_{e}}\right) \\
\left(\frac{\partial}{\partial t}+\mathbf{v}_{E} \cdot \nabla\right) \frac{\widetilde{p}_{e}}{p_{e}}+\mathbf{v}_{E} \cdot \nabla \log p_{e}=D\left(\frac{\widetilde{p}_{e}}{p_{e}}-\frac{e \widetilde{\phi}}{T_{e}}\right)
\end{gathered}
$$

Dissipative Coupling Model, notes

- we've used a static, resistive, current
\dagger neglects magnetic induction \leftrightarrow effects of $\partial \mathbf{B} / \partial t$, fails if $\omega \sim k_{\|} v_{A}$
- we've still used the ExB velocity for both ions and electrons, perp to \mathbf{B}
\dagger for MHD the only restriction is that electrostatic form requires $\omega \ll k_{\perp} v_{A}$
\dagger in general we require cold ions to use the ExB inertia term

$$
n_{e} e \nabla_{\perp} \phi \sim \nabla_{\perp} p_{e} \ll \nabla_{\perp} p_{i} \quad \text { requires } \quad T_{i} \ll T_{e}
$$

- we've assumed isothermal electrons in the \widetilde{p}_{e} equation
\dagger constant mass density is still OK if $\widetilde{p}_{e} \ll p_{e}$
\dagger generally, \widetilde{T}_{e} is required but adds no qualitative changes, hence neglected in simplest model
- use of cold ions allows neglect of finite gyroradius effects and still reach down to drift scale
- we've neglected sound wave effects, reasonable if $k_{\|} L_{\perp} \ll 1$
- note that to compare NUMBERS to an experiment requires absolute complexity

Scales in the Dissipative Coupling Model

- the Hasegawa-Wakatani equations: dissipative coupling and gradient forcing

$$
\begin{gathered}
\frac{c^{2} M_{i} T_{e}}{e^{2} B^{2}}\left(\frac{\partial}{\partial t}+\mathbf{v}_{E} \cdot \nabla\right) \nabla_{\perp}^{2} \frac{e \widetilde{\phi}}{T_{e}}=D\left(\frac{\widetilde{p}_{e}}{p_{e}}-\frac{e \widetilde{\phi}}{T_{e}}\right) \\
\left(\frac{\partial}{\partial t}+\mathbf{v}_{E} \cdot \nabla\right) \frac{\widetilde{p}_{e}}{p_{e}}+\mathbf{v}_{E} \cdot \nabla \log p_{e}=D\left(\frac{\widetilde{p}_{e}}{p_{e}}-\frac{e \widetilde{\phi}}{T_{e}}\right)
\end{gathered}
$$

- introduces the drift scale ρ_{s}, defined by

$$
\rho_{s}^{2}=c^{2} M_{i} T_{e} / e^{2} B^{2}
$$

- gradient forcing gives the time scale L_{\perp} / c_{s}, from the sound speed c_{s} and profile scale length L_{\perp}

$$
c_{s}^{2}=\frac{T_{e}}{M_{i}} \quad L_{\perp}=\left|\nabla \log p_{e}\right|^{-1}
$$

- most interesting effects come from the varying properties of the two nonlinearities ...

Computational Dissipative Coupling Model

- normalise in terms of ρ_{s} and c_{s} / L_{\perp}, scale variables by a factor of $\delta=\rho_{s} / L_{\perp}$

$$
\phi \leftarrow \delta^{-1} e \widetilde{\phi} / T_{e} \quad p \leftarrow \delta^{-1} \widetilde{p}_{e} / p_{e} \quad \Omega \leftarrow \delta^{-1} \rho_{s}^{2} \nabla_{\perp}^{2}\left(e \widetilde{\phi} / T_{e}\right)
$$

- only parameter is $D \leftarrow D L_{\perp} / c_{s}$

$$
\begin{gathered}
\left(\frac{\partial}{\partial t}+\mathbf{v}_{E} \cdot \nabla\right) \Omega=D(p-\phi) \\
\left(\frac{\partial}{\partial t}+\mathbf{v}_{E} \cdot \nabla\right) p=-\frac{\partial \phi}{\partial y}+D(p-\phi)
\end{gathered}
$$

- ExB advection defined in terms of a Poisson bracket structure, e.g.,

$$
\mathbf{v}_{E} \cdot \nabla p=[\phi, p]=\frac{\partial \phi}{\partial x} \frac{\partial p}{\partial y}-\frac{\partial \phi}{\partial y} \frac{\partial p}{\partial x}
$$

- linear forcing terms are the dissipative coupling (D) and the gradient drive: $v_{E}^{x}=-\partial \phi / \partial y$

Illustration of Dual Cascade

- periodic domain, $\left(20 \pi \rho_{s}\right)^{2}$
- examine decaying turbulence started in middle of spectrum (set gradient drive to zero)

$$
p_{\mathbf{k}}(0)=\phi_{\mathbf{k}}(0)=a_{0}\left[1+\left(k_{\perp}^{2} / 0.32\right)^{4}\right]^{-1 / 2} e^{i \Theta}
$$

\dagger random phase Θ
$\dagger a_{0}$ chosen such that rms amplitude is 3.0

- test "hydrodynamic" limit $D=0$
\dagger Euler equation for Ω, passive advection for p
- note in some of the figures label for p is n_{e}
- Time evolution of the hydrodynamic model

- initial decay of half squared amplitudes of p and ϕ, denoted A_{n} and A_{p}, respectively
\dagger also ExB energy $\left(U_{E}\right)$ and fluctuation free energy $\left(U_{n}\right)$
- energetic losses (mostly in p due to the direct cascade) for three values of the resolution
- Amplitude spectra in the hydrodynamic model, for p, ϕ, and Ω ('n', 'p', and 'w')

- times of the snapshots are $t=0$ (left), $t=9.8$ (center), and $t=24$ (right)
- the spectra evolve rapidly apart due to the differing cascade dynamics for p and Ω versus ϕ
blank page to fool ps2pdf
- Evolution of the disturbances for the hydrodynamic model (note $n_{e}=p$)

$$
t=0.00
$$

- note that the morphology of Ω and ϕ is completely different although $\Omega=\nabla_{\perp}^{2} \phi$

Energy Transfer in the Dissipative Coupling Model

- switch gradient drive back on
- run to "saturation" defined by statistical stationarity for spectral quantities
- wide range of coupling strength, $D=0.01,0.03,0.1,0.3$, and 1.0
- displayed for $D=0.1$
\dagger energy transfer directions hold for all D checked, only the robustness changes
- $D \rightarrow \infty$ is the "adiabatic limit" where $J_{\|} \rightarrow 0$ and $\phi \rightarrow p$
\dagger robustness of $\mathbf{v}_{E} \cdot \nabla p$ proportional to about $D^{-3 / 4}$
- Time evolution of the dissipative coupling model, for the nominal case of $D=0.1$

- half squared amplitudes of p and ϕ, denoted A_{n} and A_{p}, respectively
\dagger also ExB energy $\left(U_{E}\right)$ and fluctuation free energy $\left(U_{n}\right)$
- transport caused by the turbulence, $Q_{e}=\left\langle p v_{E}^{x}\right\rangle$, for three values of the resolution
\dagger for $64^{2}, 128^{2}$, and 256^{2} grid nodes, the values are 4.69 ± 0.80 and 4.89 ± 0.74 and 4.14 ± 0.51
- Saturated state of the dissipative coupling model, for the nominal case of $D=0.1$

- averaged amplitude spectra for p, ϕ, and the Ω ('n', 'p', and 'w')
- morphology of ϕ and $n_{e}=p$ at $t=400$
\dagger close coupling at larger scales but differences on smaller scales, corresponding to the spectra \dagger the nonlinear interactions affecting p are stronger relative to the coupling at higher k_{\perp}
- Energy and enstrophy transfer in the dissipative coupling model, with $D=0.1$

- transfer is from k^{\prime} to k, shown where positive
- results show local cascade: mostly $1 / 2<k^{\prime} / k<2$
- direct cascade for U_{n} and $W, \quad \ldots \quad$ inverse cascade for U_{E}

Energy Transfer: electromagnetic turbulence

(B Scott Phys Fluids B 1992, Plasma Phys Contr Fusion 1997)
(S Camargo et al Phys Plasmas 1995 and 1996)

Transport due to ExB Turbulence

- the turbulence causes a finite average advective transport, in general...

$$
Q=Q_{e}+Q_{i} \quad Q_{e}=\left\langle\frac{3}{2} \widetilde{p}_{e} v_{E}^{x}\right\rangle \quad Q_{i}=\left\langle\frac{3}{2} \widetilde{p}_{i} v_{E}^{x}\right\rangle
$$

- in a confined plasma, the equilibrium is maintained by a source

$$
\oint d V S=\oint d S Q=\oint d V \frac{\partial Q}{\partial x}
$$

- the time scales are very different; typical values: $\delta \sim 10^{-2}$

$$
\tau_{\text {turb }} \sim 200 \frac{L_{\perp}}{c_{s}} \quad \tau_{\text {source }} \sim \text { few } \times \delta^{-2} \frac{L_{\perp}}{c_{s}}
$$

- profiles evolve slowly, turbulence in quasistatic statistical equilibrium
it is a good approximation to consider turbulence in the presence of a prescribed gradient

